Design the Difference

Liberare il potenziale dell'Additive Manufacturing con nuove tecniche di progettazione

Ing. Giulio Turinetti 25 September 2017

Altair Numbers

Founded **1985** Headquarted in Troy, MI US

48 offices

in 22 countries

\$323M 2016 Billings

50+ ISV partners under our unique, patented licensing model

2500+

Engineers, scientists and creative thinkers

5000+

60,000+

Customer Installations globally

Users

Our Vision

To radically change the way organizations design products and make decisions

5,000 customers installations worldwide

Automotive	Aerospace	Heavy Equipment	Government
CHRYSLER RENAULT RE	BAE SYSTEMS BOEING AIRBUS BOMBARDIER GROUP EMBRAER HONEYWEII	ALSTOM CATERPILLAR° DSHKDSH	COLORIST
Life/Earth Sciences	Electronics/Consumer Goods	Energy	Architecture
The Chemical Company	EBM BOSCH	ConocoPhillips ExonMobil	AECOM

Altair Solver Technology

Multiphysics Simulation and Optimization

Mechanical

Fluid flow and Thermal

Electromagnetics

Multi-Physics

© 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

ALM Process

Main elements of ALM Technology

How to get benefits

Slow Process

Very expensive Powders

Massive parts have huge distorsion

Huge ratio between material and void

Complexity is for free

Lattice is allowed

Mass reduction has a big impact on the whole result

To get most benefit we need to think complex shapes

The Additive Manufacturing Design Challenge

How can a designer come up with the best possible shape?

picture by courtesy of Laser Zentrum Nord 🛂

Topology Optimization

Given the package space and loading conditions for a

design problem, optimization quickly generates the

ideal shape.

Never too soon to optimize

🛆 Altair

Altair Topology Optimization is OptiStruct

4KSS

Altair is the premier provider of design optimization software, driving design processes of

leading manufacturers for over 20 years

Make the design Manufacturable

Suitable for Casting - ALM

Introducing Manufacturing constraints the final desing has more doable shape for that manufacturing technology, But with the

Same Performaces

- Stress
- Stiffness
- Mass...

Suitable for Milling, Stamping

🛆 Altair

Shape the Inspiration

🛆 Altair

Model Preparation Conceptual Optimization

🛆 Altair

🛆 Altair

Shape the Inspiration

Model PreparationConceptual
OptimizationConcept
ValidationConcept
ModificationCompare
ResultsConcept
Interpretation
CAD

Shape the Inspiration Concept Model Preparation Concept Validation Concept Modification Compare Results Concept Interpretation CAD Final CAD

Advance geometry recontruction via full PolyNurbs technology and many more

Process Exploration

Is the ALM technology Limitless?

Types of support

All of the second that is not face with respect

second is not coling to the form satisfy and represent the scatting and movem · introduced in the province.

insurance 4, Insurance 5, dot and have \$44, while there \$10, \$10.

and increase the least for success, denote all in a particular to a

The structure structure bases of assessment in our 201 or the structure structure in a second structure of a structure of the structure of the

National schale measure an article and he she have that constant the province of factory cardinate With our he constant in which the

I dry buy and been of the bady part for inserts of a second state of a second state of the trappersy call for investment in the land

The particular in the barrie structure dama and protected and importent to the man part families on any angles. when and second the set of

matures, residence of ferrar Prophysics of

inquiriest in soil despects

If the aright to been the point which is it.

appetience is not probably tool require on a longer of the balance. at MALE the carrier a spiritual mean of the design of the design of the second second

How to consider the NEW Manufacturing Constraints?

Overhang angle Constraint

In general supports represent a problem:

- Wasted material
- Time consuming
- Influence the surface finish
- Manual operation

Initial design "Free" No manufacturing constraint

Minimise Support Structure by Overhang Angle Control 45° respect to Building Direction

Expansion to third party software

Altair's business model allows for programs such as the Altair Partner Alliance (APA)

Third Party Organizations' products are included under the Altair licensing for seamless access by customers 50 signed partners and 1500+ companies with APA access to date

No additional costs for customers

92% of customers who have access to APA have downloaded an APA product

600 companies downloaded a product they'd never tried before just in 2016

Process Exploration via APA softwares

In ALM process simulation Altair can offer different softwares to manage model recontruction and process simulation.

Fast and advanced geometry reconstruction starting from STL Process simulation (Meso and Macro scale) Process simulation (Macro scale) with Inherent Strain Approach

Robust Design

Fail Safe

- A fail safe design is one that in an event of failure, responds or results in a way that will cause no or minimum harm
- Fail-safe structure must support 80-100% limit loads without catastrophic failure (*Airframe structural design by Michael NIU*)

Delta airlines flight 1288, the aircraft suffered an engine explosion however the rest of the plane remained controllable and the most passengers survived unharmed.

Fail Safe Optimization

Setting damage Zones in all the design space

Create several models with defects.

Each variation has to fits the topology optimization requests

Final results is the Optimal compromise amongs all the defected variations Redundant load-path

Fail Safe Optimization

Robust Design – Topology Optimization (RBTO)

Due to manufacturing process we introduce a set of variable parameters like:

- UTS of the material
- Young Modulus
- Orthotropy (before Heat treatment)

We need to switch to <u>deterministic</u> approach to <u>Stochastic</u> approach since the very beginning as Topology Optimization

Robust Design – Topology Optimization (RBTO)

Robust Design – Validation

4231

Static Max Value = 3 1190E-004

X

STANDARD_OPTIMIZATION

LOAD= 1000N

YOUNG=116.5Gpa

MAX DISPL=0.5mm

OBJ=MIN MASS

RBTO RESULT VARIABLE MATERIAL LOAD= 1000N YOUNG=93.2Gpa OBJ=MIN MASS MAX DISPL=0.5mm

4234 Static Max. Value = 2.330E-004

Even with the worst scenario (low material property) the final design respect all the mechanical performances

© 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Lattice Structures

Lattice structures are natural from Topology results

Lattice Structure Workflow

Classic ALM redesign process

How all of this becomes REAL

🛆 Altair

From the Printer into Space

3D Printed Antenna Bracket for Sentinel-1 Satellite:

- 43% weight reduction (from 1.626 kg to 0.936 kg)
- Increased Eigen frequency (70Hz → 90 Hz)
- Improved static behaviour, strength, stiffness, stability

ahead. RUAG

Verification

- Comparison of CAD model with physical model through Computer Tomography.
- Scan resolution of 320 μm

Together

ahead. RUAG

Design process summary

Design

- Functional analysis
- Topology optimization
- CAD Interpretation
- Size/Shape optimization
- Detail stress analysis

Manufacturing

- Optimization
- Post-Processing
- Samples definition
- Process control

Verification / Testing

- Quality control
- Test definition
- Qualification testing
- Model correlation

42% Weight save

Camera bracket – Optimization model and problem definition

- Material: Titanium
- Package Space Defined by Airframe
 Compartment
- Non-Design Regions to Accommodate
 Fixings
- Loading and Boundary Conditions
 Consistent with Baseline
 - Lateral
 - Longitudinal
 - Modal

Objective	Minimise Mass
Constraints	First Mode Natural Frequency Longitudinal Displacement Lateral Displacement

Design process summary

38% WEIGHT SAVE

