

A. Balsamo, M. Pisani, C. Francese, A. Egidi, E. Audrito, D. Corona

INPLANT — A NOVEL 3D COORDINATE MEASURING SYSTEM FOR HOSTILE ENVIRONMENTS

- Goals
- The concept
- The design and prototype realisation
- Validation

• Conclusions

The work package 1: Innovative measurement systems

3

- To deliver innovative systems operating over a volume of (10 × 10 × 5) m^3 , to a target accuracy of 50 μ m, in industrial environments
- Two systems have been produced (prototypes)
 - InPlanT, Intersecting Planes Technique (INRIM)
 - FSI, Wide-beam Frequency Scanning Interferometry (NPL)

- For large dimensions, optical instruments seem to be an obvious choice. In fact the light
 - Has got no mass, and can be moved (redirected) easily over large distances
 - Travels (almost) straight
 - Travels any (indoor) distance
 - It is capable of carrying interferometric information

Two ways for using the light

- The light can be used to measure coordinates in two fundamental ways:
 - As a(n interferometric) distance meter
 - As a pointing device

Influence of the air on light: the refractive index, *n*

f(*x*)

As a distance meter

6

- *n* expresses the speed of light in air
- With different *n*, a same distance is covered by different numbers (and fractions) of wave cycles
- What counts is not the *n* value at any point in space, rather the integral mean over the beam path:

$$I_0 = nI \rightarrow I_0 = \int_I ndI$$
 ______ $\int_I ndI$

- The measured light *phase* is affected proportionally
 - If e.g. 10^{-6} uncertainty is sought, (at least) 10^{-6} must be achieved for *n*

As a pointing device

- The phase is not relevant
- The light "bends" due to the a refractivity gradient normal to the path
- The resulting path is parabolic: $f''(x) = \partial_z n/n$
- With a 1×10^{-6} /m gradient (~ 1 K/m), the bending is $f(15 \text{ m}) \approx 0.1 \text{ mm}$
 - With a reasonable knowledge of the gradient (e.g. 10% uncertainty), the effect of beam bending after correction can be kept below 10 µm

unhunhun

∂_zn

Existing pointing devices

- Spherical coordinates
 - Laser trackers
- Tri- (or multi) angulation:
 - Structured light
 - Laser scanners
 - iGPS

. . .

Photogrammetry

unhinni

Pointing by angles: the only option?

• All these instruments

- Point to a target by varying *angles*
- These angles are *measured*; and possibly *controlled* (for tracking)
- Angles [dimensionless] alone cannot yield coordinates [lengths]; the essential link to a length is taken from
 - The interferometer/distance meter (laser trackers)
 - The mutual positions of the emitters/receivers (multiangulation, iGPS, ...), usually precalibrated based on a calibrated artefact

- InPlanT proposes a different option:
 - Pointing is achieved partially by angles and partially by a linear position
 - The angles are not measured, only the linear positions are

Concept of InPlanT (*Intersecting Plane Technique*)

9

MESAP, 2017-03-06

10

Main features of InPlanT

- Fully parallel measuring axes
 - Each measures a coordinated independently of the others (no kinematic seriality)
- Light used for pointing only; the actual measurements are
 - carried out by regular linear encoders
 - confined to the volume sides, where the environment may be not so harsh and possibly protected
- No interferometry

- No need for measuring the refractive index of air
- A moderate knowledge of its gradients suffices

Design of each axis

MESAP, 2017-03-06

- A moving linear stage carries:
 - A rotary table (RT) with rotation axis aligned to the measurement axis
 - A laser collimator (fed by a fibre, not drawn) aligned to the rotation axis
 - A pentaprism attached to the RT which deflects the beam 90° regardless of its orientation
- The beam impinges onto a retroreflecting target
- The returning beam is deflected back by the pentaprism and impinges (through a beam splitter) onto a camera
 - The camera sees the (luminous) image of the retroreflecting sphere
- The position of the sphere in the camera image drives
 - Vertically, the rotary table

12

- Horizontally, the linear stage
- When the image is centred (possible residuals are compensated), the linear position is measured by a linear encoder and constitutes the sought coordinate

- The slider stroke is inevitably affected by yaw and pitch
 - To detect and correct, the pentaprism also separates the beam
 - The actual misalignment of the undeflected beam and then the yaw and pitch – is measured by a still autocollimator at the end of the stroke

Design and realisation

13

Realised set ups

1 m stroke

15

2 m stroke

Limits of the prototype

- In principle, to achieve a (10 × 10 × 5) m³ measuring volume, two 10 m and one 5 m axes are required
- Due to the budget limitation, the project prototype is limited to two axes only, with strokes of 1 m and 2 m, respectively
- Only the 2D coordinates of the projection of the target over a measuring plane can be measured at the moment, limited to an area of (1×2) m²
- However, measurements in a 3D space at full distance (e.g. at 10 m) are possible thanks to the mutual independence among axes

The retroreflecting sphere

- The target is targeted from different aiming directions
 - Wide acceptance

19

- Invariance of the localisation point with these directions
- The most isotropic geometrical element is the sphere
- When a sphere is made of S-LAH79 (glass with *n* = 2)
 - The retroreflected beam is parallel and collimated, very much as with a cube corner
 - ... within the limits of approximation of small angles

[Takatsuji et al., Meas. Sci. Technol. 10, 1999]

սահատհատ

Images from the sphere

In lab, slightly different optical set up

20

On field

The sphere images

- It is a complex optical phenomenon, not fully understood
 - Some literature exists, but not for wide beams:
 [Yang et al. Int. Workshop on Accelerator Alignment, Grenoble (FR), 1999]
- The retroreflected light accumulates at certain angles
 - resulting in concentric rings

- The longer the distance to the target the bigger the ring sizes, and the fewer visible rings
- A challenge for the image algorithm to compute a point localising the pattern (not necessarily the centre)

The multiple autocollimator

- The multiple autocollimator measures yaws and pitches for compensation
- Effectively, it serves as the overall InPlanT reference frame
- The two autocollimators should be set orthogonal
 - To minimise the squareness error
 - Calibrated in laboratory

Sensitivity:

12 µrad/px

23

Autocollimator

Experimental validation

MESAP, 2017-03-06

- A bar with two spheres was attached to a high precision rotary table
 - Both the measuring plane and the rotation axis aligned to the vertical
- The generated positions laid on two circles
 - The rotary table assumed to be perfect
 - Any deviation from circularity attributed to the InPlanT device

Derivation of results

- Three compensations:
 - 1. Of the control error of the linear stages, by observing the displacements of the sphere images at the on-board cameras
 - 2. Thermal expansion of the linear encoders
 - Yaws and pitches by observing the autocollimator signals

Testing conditions

Ball bar nominal length	500 mm
Rotation axis (x,y) coordinates	(450 mm, 450 mm)
No of angular positions	8+
No of points	19
No of outliers (discarded)	1
Temperature	(17.0 – 18.2) °C
Geometrical parameters to fit	(x_0, y_0, R_1, R_2) concentric fit

- An InPlanT working prototype was constructed
 - Limited to 2D and to a (1×2) m² area, but simulating 3D and $(10 \times 10 \times 5)$ m³ in full
- The principle has been successfully validated
- An error standard deviation of 45 μm was achieved in the rotary table test in harsh conditions
- Further test data are currently being evaluated